Abstract

Using nanostructured materials, especially nanoporous aluminum oxide, becomes more popular in recent years. The main purpose of this paper is developing an artificial neural network (ANN) model and conducting an experiment to predict the pore diameter of nanoporous aluminum oxide membrane. For this reason, a total of 32 experimental data are collected and used to develop the proposed model. The process parameters such as electrolyte concentration, temperature and anodization potential are considered as input, while the pore diameter is accounted for output. A comparison of ANN, experimental study and two previous empirical formulas indicates that ANN has a good predictive capability of the pore diameter. It can also forecast the experimental result with an acceptable error. The results also reveal that both empirical formulas are too conservative.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.