Abstract

Research with neural networks typically ignores the role of knowledge in learning by initializing the network with random connection weights. We examine a new extension of a well-known generative algorithm, cascade-correlation. Ordinary cascade-correlation constructs its own network topology by recruiting new hidden units as needed to reduce network error. The extended algorithm, knowledge-based cascade-correlation (KBCC), recruits previously learned sub-networks as well as single hidden units. This paper describes KBCC and assesses its performance on a series of small, but clear problems involving discrimination between two classes. The target class is distributed as a simple geometric figure. Relevant source knowledge consists ofvarious linear transformations ofthe target distribution. KBCC is observed to find, adapt and use its relevant knowledge to speed learning significantly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.