Abstract

Learning-to-rank has been an exciting topic of research exclusively in hypothetical and the productions in the information retrieval practices. Usually, in the learning-based ranking procedures, it is expected the training and testing data are recovered from the identical data delivery. However those existing research methods do not work well in case of multiple documents retrieved from the cross domains (different domains). In this case ranking of documents would be more difficult where the contents are described in multiple documents from different cross domains. The main goal of this research method is to rank the documents gathered from the multiple domains with improved learning rate by learning features from different domains. The feature level information allocation and instance level information relocation are achieved with four learners namely RankNet, ranking support vector machine (SVM), RankBoost and AdaRank. The estimation results presented that the AdaRank algorithm achieves good performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.