Abstract

JPEG has played an important role in the image compressioneld for the past two decades. Quantization tables in the JPEG scheme is a key factor that is responsible for compression/qual trade-off. Finding the optimal quantization table is an open research problem. Studies recommend the genetic algorithm to generate the optimal solution. Recent reports revealed optimal quantization table generation based on a classical genetic algorithm (CGA). Although the CGA produces better results, it shows inefficiency in terms of convergence speed and productivity of feasible solutions. This paper proposes a knowledge-based genetic algorithm (KBGA), which combines the image characteristics and knowledge about image compressibility with CGA operators such as initialization, selection, crossover, and mutation for searching for the optimal quantization table. The experimental results show that the optimal quantization table generated using the proposed KBGA outperforms the default JPEG quantization table in terms of mean square error (MSE) and peak signal-to-noise ratio (PSNR) for target bits per pixel. The KBGA was also tested on a variety of images in three different bits values per pixel to show its strength. The proposed KBGA produces an average PSNR gain of 3.3% and average MSE gain of 20.6% over the default JPEG quantization table. The performance measures such as average untness value, likelihood of evolution leap, and likelihood of optimality are used to validate the efficacy of the proposed KBGA. The novelty of the KBGA lies in the number of generations used to attain an optimal solution as compared to the CGA. The validation results show that this proposed KBGA guarantees feasible solutions with better quality at faster convergence rates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.