Abstract

To evaluate the effect of the addition of 2 horizontal mattress knots to the medial row of a knotless rotator cuff construct on the biomechanical properties in terms of both cyclic and failure testing parameters in an external rotation model. In 8 fresh-frozen human cadaveric shoulders, a knotless transosseous repair was performed, whereas in 8 contralateral matched-pair specimens, 2 horizontal mattress knots were added to the medial-row fixation. A custom jig was used that allowed external rotation (0° to 30°) with loading. A materials testing machine was used to cyclically load repairs from 0 to 180 N for 30 cycles and then to failure. Video digitizing software was used for analysis. Data from paired specimens were compared by use of paired Student t tests. Ultimate load to failure was significantly higher in the modified construct (549 N v 311 N, P = .01). Linear stiffness in the first cycle, at the 30th cycle, and at failure was significantly higher (P = .02, P = .02, and P = .04, respectively) in the modified construct as well. Energy absorbed by the repaired tissue was significantly less in the modified construct at the first cycle, at the 30th cycle, and at ultimate load to failure (P = .03, P = .02, and P = .04, respectively). Significantly greater anterior gap formation occurred with the knotless technique at the first cycle (4.55 v 1.35) and 30th cycle (7.67 mm v 1.77 mm) (P = .02). The modified construct shows improved biomechanical properties when allowing for external rotation during high-load testing. Using an additional horizontal mattress from separate sutures in the medial-row anchors helps to neutralize forces experienced by the repair. The addition of medial-row fixation to a knotless construct will enhance the stability of rotator cuff repairs with the goal of improved patient outcomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.