Abstract

The aim of this study was to develop models on occluded branch characteristics for Fagus sylvatica (beech) based on 41 sample trees. A total of 717 beech branches were sampled; this information was then used to predict (1) the time for a complete occlusion, (2) the total radius of the occluded branch inside the trunk, (3) the branch insertion angle at the year of its death and during branch development, and (4) the dead branch portion of the occluded branch (loose knot). Generalized hierarchical mixed models with nonlinear forms were used in this analysis. The models explained between 6.3 and 52.2% of the total variance (including random effects 23.8–77.1%). The diameter of the occluded branch and the stem radial increment played dominant roles as predictors. Larger branches showed a significantly longer occlusion time, a larger occluded branch radius, a steeper insertion angle, and a higher loose knot portion. Simulations showed a biologically reasonable overall behavior of the models. The residual variation was tolerable for integrating the models into a growth simulation system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.