Abstract

Myocardial infarction (MI) is a big health threat in the world, and it is characterized by high morbidity and mortality. However, current treatments are not effective enough, and novel therapeutic strategies need to be explored. ZFAS1 has been proved to be involved in the regulation of MI, but the specific mechanism remains unclear. MI rats were constructed through left anterior descending artery ligation, and hypoxia cell model was also established. The proliferation, invasion, and migration of cells were detected via CCK8, traswell, and wound healing methods. Immunohistochemistry staining, western blotting, and qRT-PCR were used to detect the levels of molecules. Knockdown of ZFAS1 significantly increased the proliferation, migration, and invasion of cardiac fibroblasts. Knockdown of ZFAS1 remarkably improved cardiac function via decreasing infarction ratio and increasing vWF expression, left ventricular ejection fraction, and left ventricular fractional shortening compared with group MI. Knockdown of ZFAS1 also suppressed Wnt/β-catenin pathway in vivo. The inhibition of Wnt/β-catenin remarkably reversed the influence of shZFAS1 on cardiac function and cardiac fibroblasts viability. Therefore, Knockdown of ZFAS1 could improve the cardiac function of myocardial infarction rats via regulating Wnt/β-catenin signaling pathway. The present study might provide new thoughts for the prevention and treatment of MI damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.