Abstract

Lufenuron (LUF) and Methoxyfenozide (MET) as Insect Growth Regulators (IGRs) contribute to the current control of the catastrophic crop pest, Spodoptera exigua (Lepidoptera, Noctuidae). Yet S. exigua has evolved resistance to LUF and MET, which is possibly mediated by cytochrome P450 monooxygenases (P450s), particularly from the CYP3 clade family, as it plays a key role in the detoxification of insecticides. However, a mixture of LUF and MET (MML) (optimal ratio: 6:4) remains highly insecticidal. Here, we analysed the response of S. exigua to sublethal concentrations of LUF, MET, and MML via transcriptomics. Twelve differentially expressed genes (DEGs) encoding CYP3 clade members were observed in transcriptomes and CYP9A9 was significantly upregulated after treatment with LUF, MET, and MML. Further, CYP9A9 was most highly expressed in the midgut of L4 S. exigua larvae. RNAi-mediated knockdown of CYP9A9 reduced the activity of CYP450 and increased the susceptibility of S. exigua larvae to LUF, MET, and MML. Thus, CYP9A9 plays a key role in the detoxification of LUF, MET, and MML in S. exigua. These findings provide new insights into insecticidal actions of IGRs, which can be applied to the establishment of novel pest management strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.