Abstract
BackgroundThe aldo-keto reductase 1C3 (AKR1C3) has been heavily implicated in the propagation of prostate malignancy. AKR1C3 protein is elevated within prostate cancer tissue, it contributes to the formation of androgens and downstream stimulation of the androgen receptor (AR). Elevated expression of AKR1C3 is also reported in acute myeloid leukemia but the target nuclear receptors have been identified as members of the peroxisome-proliferator activated receptor (PPARs) subfamily. Thus, AKR1C3 cancer biology is likely to be tissue dependent and hormonally linked to the availability of ligands for both the steroidogenic and non-steroidogenic nuclear receptors. MethodsIn the current study we investigated the potential for AKR1C3 to regulate the availability of prostaglandin-derived ligands for PPARg mainly, prostaglandin J2 (PGJ2). Using prostate cancer cell lines with stably reduced AKR1C3 levels we examined the impact of AKR1C3 upon proliferation mediated by PPAR ligands. ResultsThese studies revealed knockdown of AKR1C3 had no effect upon the sensitivity of androgen receptor independent prostate cancer cells towards PPAR ligands. However, the reduction of levels of AKR1C3 was accompanied by a significantly reduced mRNA expression of a range of HDACs, transcriptional co-regulators, and increased sensitivity towards SAHA, a clinically approved histone deacetylase inhibitor. ConclusionsThese results suggest a hitherto unidentified link between AKR1C3 levels and the epigenetic status in prostate cancer cells. This raises an interesting possibility of a novel rational to target AKR1C3, the utilization of AKRIC3 selective inhibitors in combination with HDAC inhibition as part of novel epigenetic therapies in androgen deprivation therapy recurrent prostate cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of Steroid Biochemistry and Molecular Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.