Abstract

Accurately and effectively calculating combustion efficiency in coal burners is crucial for industrial boiler manufacturers. Two main approaches can be used to calculate boiler efficiency: 1) Analyzing the gas emitted from the flue; 2) Visualizing the combustion chamber in the boiler. Flue gas analyzers, which are not user-friendly, come with high costs. Additionally, the physical distance between the flue and the combustion chamber causes the measurement to be delayed. Methods based on visualizing the combustion chamber do not have these disadvantages. This study proposes a system based on visualizing the combustion chamber and has two contributions to the literature: 1) for the first time, the modern Convolutional Neural Networks (CNN) approach is used to estimate combustion efficiency; 2) the CNN architecture with optimal parameters can work on an embedded platform. When classical classification techniques and a CPU-supported processor card are used, efficiency can be calculated from one flame image in 1.7 seconds, while this number increases to approximately 20 frames per second (34 times faster) when the proposed CNN architecture and GPU-supported processor card are used. The results obtained demonstrate the superiority of the proposed CNN architecture and hardware over classical approaches in estimating coal boiler combustion efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.