Abstract
Federation Internationale de Football Association (FIFA) carried out Transformations and Reformations to Indonesian Football with one of them Indonesia was chosen as the Host of the U-20 World Cup in 2023. The transformations and reformations carried out cause people to often provide opinions through social media Twitter. Opinions given by the public can be positive or negative. The research uses Text Mining to classify sentiment in 2 categories with the Bernoulli Naïve Bayes algorithm. This research aims to classify positive and negative sentiments and determine the level of accuracy value of the sentiment classification results of Indonesian Football Transformation and Reformation. The research stages carried out are data collection, text preprocessing, data labeling, TF-IDF weighting, Bernoulli Naïve Bayes classification, and evaluation. Based on the research results from 4907 data there is duplicate data and only uses 2125 data which is divided into 90% training data and 10% testing data, so as to get accuracy with a high category value of 88%. The classification results show that many tweets are positive sentiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.