Abstract

PVDF was prepared by compression molding, and its phase content/structure was assessed by WAXD, DSC, and FTIR-ATR spectroscopy. Next, PVDF samples were aged in bioethanol fuel at 60 °C or annealed in the same temperature by 30 ─ 180 days. Then, the influence of aging/annealing on thermal stability, thermal degradation kinetics, and lifetime of the PVDF was investigated by thermogravimetric analysis (TGA/DTG), as well as the structure was again examined. The crystallinity of ~41% (from WAXD) or ~49% (from DSC) were identified for unaged PVDF, without significant changes after aging or annealing. This PVDF presented not only one phase, but a mixture of α-, β- and γ-phases, α- and β-phases with more highlighted vibrational bands. Thermal degradation kinetics was evaluated using the non-isothermal Ozawa–Flynn–Wall method. The activation energy (Ea) of thermal degradation was calculated for conversion levels of α = 5 ─ 50% at constant heating rates (5, 10, 20, and 40 °C min─1), α = 10% was fixed for lifetime estimation. The results indicated that temperature alone does not affect the material, but its combination with bioethanol reduced the onset temperature and Ea of primary thermal degradation. Additionally, the material lifetime decreased until about five decades (Tf = 25 °C and 90 days of exposition) due to the fluid effect after aging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.