Abstract

The kinetics of the reverse martensitic transformation in shape memory alloy wires is studied under conditions at which it is restricted neither by the rate of heat transfer nor by mechanical inertia. Two characteristic times for the transformation are identified and estimated. A model provides a universal expression that fits all experimental measurements performed at different temperatures. The kinetic law predicted by the model indicates that interface velocities are governed by viscous resistance and are thus much slower than the shear wave speed, even under very large driving force values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.