Abstract

The use of nickel-based catalysts in the hydrodeoxygenation of vegetable oils is an alternative to employing systems based on noble metals and sulfided hydrotreatment catalysts. Modifying nickel hydrodeoxygenation catalysts with molybdenum and copper increases the yield of target reaction products and the resistance of catalytic systems to the effect of an aggressive medium. The aim of this work is to determine the dependence between the temperature, contact time, and activity of modified nickel-containing catalyst in the hydrodeoxygenation of esters of fatty carboxylic acids and determine the effective kinetic parameters for the consumption of the reagent. The experiments are performed in a continuous flow reactor with a fixed catalyst bed at $${{P}_{{{{{\text{H}}}_{2}}}}}$$ = 0.25 MPa, temperatures of 270, 285, 300, and 315°C, and a contact time varying from 600 to 1800 s. The results show the selectivity toward the main reaction products (nonane and decane) remains the same when either the temperature of experiment or the contact time are varied. Experimental data are used to determine the effective rate constant and energy of activation of ester consumption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.