Abstract

The kinetics of the dehydroxylation of talc have been measured in the temperature interval 1100–1160 K by means of isothermal weight-change determinations. The reaction follows first-order kinetics. Over the indicated temperature range the enthalpy of activation was found to be 101±4 kcal mol −1, and the entropy of activation was found to be 16±4 cal mol −1 K −1. The error estimates correspond to one standard deviation. The enthalpy necessary to break the MgOH bond was estimated from the heat of reaction for MgOH(g) → Mg(g)+OH(g). This turns out to be 97 kcal mol −1 in reasonable agreement with the measured enthalpy of activation. These activation parameters are consistent with the mechanism proposed for dehydroxylation of talc consisting of MgOH bond scission and subsequent migration of magnesium. These results contradict a previous report on the kinetics of talc dehydroxylation in which a diffusion-controlled expression was claimed to represent the rate of talc weight loss. It is suggested that the presence of adsorbed water on the talc used in the previous investigation is responsible for the discrepancy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.