Abstract
The relative-volume activities (RVAs) for real feedstocks HDS of four commercial CoMo/Al 2O 3 catalysts have been compared to the rates for thiophene and dibenzothiophene conversion. The reaction of thiophene competing with H 2S was studied in flow microreactors under a wide range of conditions: 300–400°C, overall pressure 0.1 or 3 MPa, thiophene pressure 8–125 kPa, H 2S content 0–15 mol%. The reaction of dibenzothiophene (DBT, 2 wt% in decaline) was carried out in a batch reactor at 335°C and 4 MPa. The conversion of the two model molecules proceeds through the same mechanism with a preliminary dearomatization step followed by parallel hydrogenolysis and hydrogenation. From kinetic modeling, the global rates and the contribution of the hydrogenation and hydrogenolysis routes to HDS were determined. Under pressure, hydrogenolysis was predominant. In that case, thiophene and DBT behaved similarly and their initial relative rates did not correlate the RVA. Industrial HDS is controlled by hydrogenation as evidenced by the good correlation between RVA and the rates of dearomatization of thiophene at atmospheric pressure and hydrogenation of the product biphenyl from DBT under pressure. It is concluded that the reaction of model molecules under selected conditions can appraise rapidly industrial HDS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.