Abstract

The grain refinement and kinetics of submicrocrystalline structure formation in a Cu-0.3%Cr - 0.5%Zr alloy during large plastic deformation were investigated. The fraction of high-angle boundaries and the fraction of ultrafine grains were used to estimate the kinetics of grain refinement and submicrocrystalline structure evolution during large plastic deformation. The multidirectional forging (MDF), equal channel angular pressing (ECAP), and high pressure torsion (HPT) were used as methods of large plastic deformation. Comparative analysis showed that the grain refinement process occurred faster during HPT and MDF in comparison with ECAP. The fraction of ultrafine grains achieved almost 1 after 3 HPT turns and after MDF to the total strain of 4; while the one reached only 0.29 after 4 ECAP passes. The modified Johnson-Mehl-Avrami-Kolmogorov equation could be applied to determine the kinetics of grain refinement in copper alloy during large plastic deformation as a function of true strain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.