Abstract

The Met precursor 2-hydroxy-4-(methylthio) butanoic acid (HMB) is expected to be more extensively degraded in the rumen than its isopropyl ester (HMBi). A control and 3 isomolar treatments—0.097% dl-methionine, 0.11% HMBi (HMBi), and 0.055% HMBi plus 0.048% Met (Met + HMBi)—were dosed every 8h simultaneously with 3-times-daily feeding into continuous cultures. Starting on d 9, for 6 consecutive doses, both [1-13C]-l-Met and [methyl-2H3]-l-Met replaced part of the unlabeled dl-Met, [13C5]-dl-HMBi replaced a portion of the unlabeled dl-HMBi, and [1-13C]-l-Met plus [13C5]-dl-HMBi replaced a portion of the respective unlabeled doses for the Met + HMBi treatment. After the sixth dose (d 11), unlabeled Met or HMBi provided 100% of the doses to follow elimination kinetics of the labels in HMBi, free Met, and bacterial Met compartments. The free [1-13C]-l-Met recycled more and was recovered in bacterial Met to a lesser extent than was the free [methyl-2H3]-l-Met recycling and that was recovered in bacterial Met. Increasing HMBi inclusion (0, 50, and 100% substitution of the exogenously dosed Met on a molar equivalent basis) tended to increase HMBi escape from 54.7 to 71.3% for the 50 and 100% HMBi treatments, respectively. Despite HMBi substituting for and decreasing the dosage of Met, increasing HMBi increased accumulation of free Met in fermenter fluid. The HMBi (after de-esterification of the isopropyl group) presumably produces Met through the intermediate α-ketomethylthyiobutyrate with an aminotransferase that also has high affinity for branched-chain AA. We provide evidence that the HMBi-derived Met is likely released from bacterial cells and accumulates rather than being degraded, potentially as a result of lagging d-stereoisomer metabolism. More research is needed to evaluate racemization and metabolism of stereoisomers of HMBi, Met, and other AA in ruminal microbes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.