Abstract

Abstract The discrete bivariate population-balance equation is formulated and solved to describe the kinetics of heterogeneous magnetic flocculation of colloidal paramagnetic particles in a uniform magnetic field. The particles are allowed to have various sizes and values of magnetic susceptibility. Computations show the importance of particle size and magnetic susceptibility on the flocculation rate and the transient bivariate (size/magnetic susceptibility) density function. The particle size distribution of certain magnetic-susceptibility particles and the magnetic-susceptibility distribution of certain size particles are calculated as functions of time and initial and operatingconditions. The composition of a floe at any time depends on magnetic, van der Waals, double layer, and hydrodynamic forces among pairs of particles. The magnetic force is a function of the particle size, magnetic susceptibility, and strength of the magnetic field. Results are presented for various initial conditions of particles after ten minutes of flocculation. The results are of significance in understanding the forces among the particles and designing efficient magnetic separation processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.