Abstract

The kinetics and microstructural evolution of austenite formation in a low carbon steel, with initial microstructure composed of ferrite and pearlite, were studied during continuous heating, by using dilatometric analysis and measurements of microstructural parameters. The formation of austenite was observed to occur in two stages: (a) pearlite dissolution and (b) ferrite to austenite transformation. The critical temperatures of austenite formation in continuous heating increase with increasing heating rate, with greater influence on the finishing temperature of austenite formation. For both the 1 °C/s and 0.1 °C/s heating rates, the formation rate of austenite reaches a maximum at approximately the finishing temperature of pearlite dissolution, and the formation rate of austenite as a function of the temperature is greater at the higher heating rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.