Abstract
Thymidylate synthase (TS), 5-fluorodeoxyuridylate (FdUMP), and 5,10-methylenetetrahydrofolate (CH2-H4folate) form a covalent complex in which a Cys thiol of TS is attached to the 6-position of FdUMP and the one-carbon unit of the cofactor is attached to the 5-position. The kinetics of formation of this covalent complex have been determined at several temperatures by semirapid quench methods. Together with previously reported data the results permit calculation of every rate and equilibrium constant in the interaction. Conversion of the noncovalent ternary complex to the corresponding covalent complex proceeds at a rate of 0.6 s-1 at 25 degrees C, and the dissociation constant for loss of CH2-H4folate from the noncovalent ternary complex is approximately 1 microM. Activation parameters for the formation of the covalent complex were shown to be Ea = 20 kcal/mol, delta G+ = 17.9 kcal/mol, delta H+ = 19.3 kcal/mol, and delta S+ = 0.005 kcal/(mol.deg). The equilibrium constant between the noncovalent and covalent ternary complexes is approximately 2 X 10(4), and the overall dissociation constant of CH2-H4folate from the covalent complex is approximately 10(-11) M. The conversion of the noncovalent ternary complex to the covalent adduct is about 12-fold slower than kcat in the normal enzymic reaction. However, because the dissociation constant for CH2-H4folate from the noncovalent ternary complex is about 10-fold lower than that from the TS-dUMP-CH2-H4folate Michaelis complex, the terms corresponding to kcat/Km are nearly equal. We propose that some of the intrinsic binding energy of CH2-H4folate may be used to facilitate formation of a 5-iminium ion intermediate.(ABSTRACT TRUNCATED AT 250 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.