Abstract

Kinetics and modeling of 1-phenyl-1,2-propanedione hydrogenation over cinchonidine-modified Pt/Al 2O 3 catalyst is reported. Hydrogenation experiments carried out in a pressurized autoclave (288 K, 1.2–6.5 bar hydrogen) revealed interesting kinetic effects which inspired the model development. The enantioselectivity towards the (R)-configuration, as well as the reaction rate and regioselectivity, depended on the modifier concentration having a maximum. The enantio- and regioselective effects were explained by the kinetic model, which assumes different number of sites for adsorption of the carbonyl groups of the 1-phenyl-1,2-propanedione as well as for the cinchonidine adsorbed in flat and tilted modes. The number of adsorption sites needed for the different species were obtained from molecular considerations and the hydrogenation rate constants were determined along with the adsorption parameters by non-linear regression analysis. A comparison of model predictions with experimental data revealed that the model accounts for the kinetic regularities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.