Abstract

Rates and products of the (3 + α)NO + CH_4 ⇒ 1/2(3 + α)N_2 + (1 − α)CO + αCO_2 + 2H_2O (0 ≤ α ≤ 1) reaction were determined in low-pressure (NO/CH_4/O_2) mixtures ([NO] < 1 μM, [CH_4] < 10[NO], [O_2] ≤ [NO]; 1 μM = 82 ppm at 1 atm, 1000 K) flowing over Sm_2O_3 between 1000 and 1200 K. Samaria pretreated with CH_4 (or H_2) at reaction temperatures instantly releases N_2 when exposed to NO. Prompt CO formation also occurs on methane-conditioned samples. In contrast, stationary outflow gas compositions attain only after several reactor residence times following step (NO + CH_4) injections to the untreated catalyst. Nitric oxide reduction rates R-NO are roughly proportional to ([CH_4] × [NO])^(1/2) but do not extrapolate to zero at [NO] → 0 and always increase with T. We infer that: (1) there is no direct reaction between CH_4 and NO on the catalyst surface; (2) instead, NO is reduced to N_2 by reaction with oxygen vacancies V, and with nonvolatile carbon-containing C_s species created in the heterogeneous oxidation/decomposition of CH_4, respectively; (3) the entire mass, rather than just the surface, of catalyst microparticles participate in this phenomenon. We propose a purely heterogeneous mechanism in which physisorbed NO reacts with either vacancies in equilibrium with the active oxygen OR species responsible for CH_4 oxidation or with C_s species. The derived kinetic law: R-NO = k_A([NO]_s[CH4])^(1/2) + k_B[CH_4], with [NO]_s = [NO]/(K_8^(-1) + [NO]), in conjunction with the reported Arrhenius parameters, closely fits rates measured under anoxic conditions. The fact that R-NO is unaffected by O_2 up to F_(O_2) ∼ 0.3F_(NO) but drops at larger F_(O_2) inflows, even if O_2 is fully consumed in CH_4 oxidation, is consistent with the competition of NO and O_2 for vacancies. The dissimilar observations made in experiments performed in the Torr range strongly suggest that solid catalysts promote combustion at such relatively high pressures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.