Abstract

Kinetics and mechanism of micellar catalyzed N-bromosuccinimide oxidation of dextrose in H2SO4 medium was investigated under pseudo-first-order condition temperature of 40°C. The results of the reactions studied over a wide range of experimental conditions show that NBS shows a first order dependence, fractional order, on dextrose and negative fractional order dependence on sulfuric acid. The determined stoichiometric ratio was 1 : 1 (dextrose : N-bromosuccinimide). The variation of Hg(OAC)2 and succinimide (reaction product) has insignificant effect on reaction rate. Effects of surfactants, added acrylonitrile, added salts, and solvent composition variation have been studied. The Arrhenius activation energy and other thermodynamic activation parameters are evaluated. The rate law has been derived on the basis of obtained data. A plausible mechanism has been proposed from the results of kinetic studies, reaction stoichiometry, and product analysis. The role of anionic and nonionic micelle was best explained by the Berezin’s model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.