Abstract
The kinetics and mechanism of enzymatic degradation on the surface of poly[(R)-3-hydroxybutyrate] (P[(R)-3HB]) film have been studied using three types of extracellular poly(hydroxyalkanoate) (PHA) depolymerases from Alcaligenes faecalis, Pseudomonas pickettii and Comamonas testosteroni. The monomer and dimer of 3-hydroxybutyric acid were produced during the course of the enzymatic degradation of P[(R)-3HB] film, and the rate of production was determined by monitoring the increase in absorbance at 210 nm on a spectrophotometer. The rate of enzymatic degradation increased to a maximum value with the concentration of PHA depolymerase, followed by a gradual decrease. The kinetic data were accounted for in terms of a heterogeneous enzymatic reaction, involving enzymatic degradation on the surface of P[(R)-3HB] film via two steps of adsorption and hydrolysis by a PHA depolymerase with binding and catalytic domains. The kinetic results suggest that the properties of the catalytic domains are very similar among the three PHA depolymerases, but that those of the binding domains are strongly dependent on the type of depolymerase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.