Abstract

The kinetics of steam reforming of methane catalyzed by sponge iron was studied at temperatures between 875°C and 1050°C. Results shows that sponge iron acts as a catalyst and methane conversion is increased in higher temperatures and with a higher H2/H2O ratio in the inlet gas. A kinetic model based on chemical reaction control fits well the experimental data up to methane conversion of 0.5 with an apparent activation energy of 258 kJ/mol. Pore diffusion limits the reaction rate more intensely at higher conversions of methane, higher temperatures, and larger particle size (from 9 to 17 mm). Two types of industrial pellets were compared showing that microstructural properties such as porosity, pore size, and grain size impact reduction rate with hydrogen and the catalytic property of the obtained sponge iron.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.