Abstract

Guinea pig liver transglutaminase (TGase) reacts with 0.1 mM N-Cbz-L-Glu(gamma-p-nitrophenyl ester)Gly (5, prepared herein, K(M) = 0.02 mM) to undergo rapid acylation that can be followed spectrophotometrically at 400 nm (pH 7.0, 25 degrees C). Deacylation of the transiently formed thiolester acyl enzyme intermediate via catalytic aminolysis was studied in the presence of six primary amines of widely varying basicity (pK(NH+) = 5.6-10.5). Steady-state kinetic studies were performed to measure k(cat) and K(M) values for each amine substrate. A Brønsted plot constructed through the correlation of log(k(cat)/K(M)) and pK(NH+) for each amine substrate displays a linear free-energy relationship with a slope beta(nuc) = -0.37 +/- 0.08. The shallow negative slope is consistent with a general-base-catalyzed deacylation mechanism in which a proton is removed from the amine substrate during its rate-limiting nucleophilic attack on the thiolester carbonyl. Kinetic isotope effects were measured for four acceptor substrates (water, kie = 1.1 +/- 0.1; aminoacetonitrile, kie = 5.9 +/- 1.2; glycine methyl ester, kie = 3.4 +/- 0.7; N-Ac-L-lysine methyl ester, kie = 1.1 +/- 0.1) and are consistent with a proton in flight at the rate-limiting transition state. The active site general-base implicated by these kinetic results is believed to be His-334, of the highly conserved TGase Cys-His-Asp catalytic triad.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.