Abstract

Phase transition from body-centered-cubic spheres to cylinders in a diblock copolymer melt under an external electric field is investigated by means of real-space dynamical self-consistent field theory. Different phase transition kinetic pathways and different cylindrical domains arrangements of the final phase are observed depending on the strength and direction of the applied electric field. Various transient states have been identified depending on the electric field being applied along [111], [100], and [110] directions. The electric field should be above a certain threshold value in order the transition to occur. A "dynamic critical exponent" of the transition is found to be about 3/2, consistent with other order-order transitions in diblock copolymers under electric field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.