Abstract

In this article analytical expressions for peptide-induced membrane leakage are presented. Two different models for time-dependent leakage have been developed. In the first, the leakage is assumed to be coupled by pores formed by the peptides. In the second model the peptide is assumed to induce a stress/perturbation in the membrane, and in order to reduce the stress, rearrangements in the membrane are induced. The leakage is coupled to these rearrangements, and when equilibrium is achieved no more leakage occurs. From the kinetic models simple fitting routines have been developed involving only two fitting parameters, and these have been used to fit experimental data for two prion protein-derived peptides as well as the honey bee toxin melittin in both vesicles and erythrocytes with good results. The fitted parameters provide both a quantitative and a qualitative basis for interpreting the experimental results. In addition a model for the peptide concentration-dependent leakage is presented, which was used to fit experimental data for leakage induced by the prion protein-derived peptides. The models presented in this article are compared with other models for peptide-induced membrane leakage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.