Abstract

The kinetic reaction of alkaline hydrolysis of candlenut shells to produce oxalic acid was investigated. It was performed for the non-catalyzed solid-liquid heterogeneous reaction in a range time of 30 to 90 minutes and temperature of 60oC to 90oC. This study showed that the reaction fitted the pseudo-first-order model, confirmed from the determinant coefficient value of 0.9182 to 0.9751, and the kinetic constant, evaluated using Arrhenius' law, was k= 0.034751 e^(-140.23⁄T). The rate control mechanism based on the shrinking core model was diffusion control, validated from determinant coefficient near one, from 0.9246 to 0.9766.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.