Abstract
Kinetic modeling is the most suitable framework to describe the dynamic behavior of mammalian cell culture although its industrial application is still in its infancy. Herein, the authors reviewed mammalian bioprocess relevant kinetic models, and found that the simple unstructured-unsegregated approach utilizing empirical Monod-type kinetics based on limiting substrates and inhibitory metabolites is commonly used due to its traceability and simple formalism. Notably, the available kinetic models are typically small to moderate in size, and the development of large-scale models is severely hampered by the scarcity of kinetic data and limitations in current parameter estimation methods. The recent availability of abundant high-throughput multi-omics datasets from mammalian cell cultures have now paved the way to improve parameterization of kinetic models, and integrate regulatory, signaling, and product quality related intracellular events, as well as cellular metabolism within the modeling framework. Ultimately, the authors foresee that multi-scale modeling is the way forward in building predictive kinetic models of mammalian cell culture to advance biomanufacturing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.