Abstract
A cobalt−tungsten η-carbide material [Co6W6C] was investigated as a precursor for a stable and active catalyst for the dry reforming of methane to produce synthesis gas. The kinetics of CH4/CO2 reforming were studied under differential conditions over a temperature range of 500−600 °C, based on a detailed experimental design. The observed rates qualitatively follow a Langmuir−Hinshelwood type of reaction mechanism. Such a scheme is considered quantitatively, with four reactions: methane reforming, reverse water-gas shift, carbon deposition, and carbon removal by a reverse Boudouard reaction. Of these, carbon deposition and carbon removal are generally disregarded in most of the reported kinetic models. The parameters of the model were successfully estimated for all of the experimental data. The comparison plots of the observed data and the predicted model show generally a good fit for all of the product species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.