Abstract
ABSTRACT The aim of this study was to investigate the kinetic functions of the lower limbs at different hitting-point heights to provide key information for improving batting technique in baseball players. Three-dimensional coordinate data were acquired using a motion capture system (250 Hz) and ground reaction forces were measured using three force platforms (1000 Hz) in 22 male collegiate baseball players during tee-batting set at three different hitting-point heights (high, middle, and low). Kinetic data were used to calculate joint torque and mechanical work in the lower limbs by the inverse dynamics approach. The peak angular velocity of the lower trunk about the vertical axis was smaller under the low condition. The joint torques and mechanical works done by both hip adduction/abduction axes were different among the three conditions. These results indicate that hip adduction/abduction torques mainly contribute to a change in the rotational movement of the lower body about the vertical axis when adjusting for different hitting-point heights. In order to adjust for the low hitting-point height which would be difficult compared with other hitting-point heights, batters should focus on rotating the lower trunk slowly by increasing both hip abduction torques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.