Abstract

The dynamics of complex systems can be mapped onto trajectories on their energy landscape. The properties of such trajectories as a function of temperature, and thus the chances of the system to enter certain regions of the state space, can be understood in terms of such energy landscapes. Here we show that their kinetic features are of equal importance as the previously discussed energetic and entropic features. Especially for barrier-crossing movements on mountainous landscapes, we observe competing effects between these three aspects, which can lead to surprising inversions in the chances to find certain states such as local minima in the systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.