Abstract

Fundamental dynamic (kinetic) aspects of the process in which water vapor interacts with the surface of drying agents that are synthesized on the basis of low-temperature modification of aluminum oxide produced from a pseudoboehmite-containing hydroxide and are modified (doped) with alkali atoms (K, Na). It is shown that the kinetics of adsorption on the samples under study, formed from the fine fraction (0.5–1.0 mm) of aluminum oxide adsorbents, can be described with the Glueckauf equation, which rather well describes the dynamics of water vapor absorption in the course of time. The equation parameters were determined: adsorption rate constants and the equilibrium adsorption capacities (a*). It was found that the alkaline modification of the surface of aluminum oxide adsorbents results in that a* increases (by ~40%) as compared with the unmodified drying agent. A correlation is observed between the equilibrium adsorption capacity of the samples under study and the acid-base properties of the surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.