Abstract

Non-uniform doping profiles are typical of modern microstructures. The conventional procedure used in computer simulation of capacitance-voltage (C-V) characteristics and C-V profiling is a quasistatic method based on solving a nonlinear Boltzmann-Poisson equation. This method includes the free carrier thermal motion, which is very important for microstructures. At the same time, it is strictly formal and employs numerical derivatives. From a mathematical standpoint, it is an ill-posed problem. To eliminate the disadvantages of the method, we propose another theoretical approach to barrier capacitance, inspired by two sources: small-signal modelling of the capacitor response and an averaging method for calculating values used in physical kinetics. This kinetic approach permits closer physical analysis of the C-V characteristics. Furthermore, the computer simulation technique based on this approach offers a great advantage over the quasistatic method in accuracy and efficiency. The results of computer simulation demonstrate the possibility of developing a technique for forward and inverse modelling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.