Abstract
The hitherto scarcely investigated retro-carotenoid rhodoxanthin possesses high potential for coloration in the food and beverage industry using technofunctional formulations prepared thereof. Hence, we studied (E/Z)-isomerization pathways of rhodoxanthin, including seven (E/Z)-isomers comprising (Z)-configured double bonds at unusual exocyclic and inner polyene chain positions. A mathematical approach was developed to deduce kinetic and thermodynamic parameters of six parallel equilibrium reactions interconnecting (all-E)-rhodoxanthin with mono-, di-, and tri-(Z)-isomers using multiresponse modeling. At 40-70 °C in ethyl acetate, reaction rate constants regarding the rotation from (all-E)- to (6Z)-rhodoxanthin were 11-14 times higher than those of the common (E/Z)-isomerization reaction at C-13,14 of the non-retro-structured carotenoid canthaxanthin. Moreover, the equilibrium reaction between (all-E)- and (6Z)-rhodoxanthin was strongly product favored as indicated by negative Gibbs energies (-1.6 to -2.2 kJ mol-1), which is unusual for carotenoids within the studied temperatures. Overall, this study provides novel insights into structure-related dependencies of (E/Z)-isomerization reaction kinetics and thermodynamics of polyenes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.