Abstract

This work demonstrates the role of Mn as an effective sintering aid in Yttria-Stabilized-Zirconia (YSZ) is a result of the concomitant reduction of activation energies and change of interfacial energies caused by Mn segregation. Kissinger analyses of the heat of sintering showed a decrease in activation energy from 219.9kJ/mol for YSZ to 103.4kJ/mol for YSZ containing 3-mol% Mn. Direct microcalorimetry analyses showed that the average surface and grain boundary energies of YSZ decreased from 0.94 and 0.71J/m2, respectively, to 0.70 and 0.17J/m2 for 3-mol% Mn doped YSZ. The decrease in the ratio between surface and grain boundary energies indicates an increase in dihedral angle from 137.5° to 166.6°, meaning an increase in sintering stress. Segregation of manganese to grain boundaries was experimentally observed and is discussed to be responsible for both kinetic and thermodynamic changes in the system while suggesting interconnection by the thermodynamic extremal principle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.