Abstract

Eucalyptus wood (Eucalyptus globulus) saw dust (SD) was treated using sodium hydroxide to improve adsorption capacity for the removal of Congo red from aqueous solutions. The treated saw dusts using sodium hydroxide was evaluated through SEM, FTIR, TGA and XRD. The Brunauer–Emmett–Teller (BET) surface area, pore volume and average pore diameter of SD were 0.3742m2/g, 0.00836cm3/g and 893.6Å. Average particle size of SD was 182.8μm. Bulk density of SD was 212kg/m3. The porosity of SD is 0.3. Equilibrium and kinetic adsorption studies were carried using SD. The effect of various operating parameters like initial pH, contact time, adsorbent dose, initial concentration and temperature on the removal of Congo red has been studied. The Congo red adsorption data were fitted to various isotherm models. It was found that Redlich and Peterson (R–P) model fitted well. The optimum pH for the adsorption was 7. The kinetics of adsorption showed that the Congo red adsorption on SD is a gradual process with quasi-equilibrium being attained in 4h. The data obtained were also applied to pseudo first-order, pseudo second-order and Weber–Morris equations. The rates of adsorption were found to conform to pseudo second-order kinetics. The adsorption of the Congo red increased with increasing temperature indicating the endothermic nature of the adsorption process. Thermodynamic parameters such as free energy, enthalpy and entropy change were calculated. This adsorbent was found to be both effective and economically viable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.