Abstract

One of the hallmarks of an eye movement that follows Listing’s law is the half-angle rule that says that the angular velocity of the eye tilts by half the angle of eccentricity of the line of sight relative to primary eye position. Since all visually-guided eye movements in the regime of far viewing follow Listing’s law (with the head still and upright), the question about its origin is of considerable importance. Here, we provide theoretical and experimental evidence that Listing’s law results from a unique motor strategy that allows minimizing ocular torsion while smoothly tracking objects of interest along any path in visual space. The strategy consists in compounding conventional ocular rotations in meridian planes, that is in horizontal, vertical and oblique directions (which are all torsion-free) with small linear displacements of the eye in the frontal plane. Such compound rotation-displacements of the eye can explain the kinematic paradox that the fixation point may rotate in one plane while the eye rotates in other planes. Its unique signature is the half-angle law in the position domain, which means that the rotation plane of the eye tilts by half-the angle of gaze eccentricity. We show that this law does not readily generalize to the velocity domain of visually-guided eye movements because the angular eye velocity is the sum of two terms, one associated with rotations in meridian planes and one associated with displacements of the eye in the frontal plane. While the first term does not depend on eye position the second term does depend on eye position. We show that compounded rotation - displacements perfectly predict the average smooth kinematics of the eye during steady- state pursuit in both the position and velocity domain.

Highlights

  • Tracking the motion of a small object across a structured visual world challenges the constancy of spatial orientation due to the visual consequences induced by the eye movements

  • This suggestion presupposes that the brain can efficiently estimate the three-dimensional kinematic consequences of the motor commands that generate the desired tracking motion of the eye

  • RCF ðr,jÞ : ~RCðrÞRF ðjÞ consisting of a first rotation of the eye through j in the head’s frontal plane followed by a rotation through r in the eye’s coronal plane and the requirement that the rotation angles fulfill the relation r~{j (Fig. 2)

Read more

Summary

Introduction

Tracking the motion of a small object across a structured visual world challenges the constancy of spatial orientation due to the visual consequences induced by the eye movements. The brain may compensate for the movement-induced optic flow by simple image translation [1]. Helmholtz perceptual stability is achieved by an estimation process of the visual consequences based on efference copy signals that are derived from the motor commands to the eye muscles [2]. This suggestion presupposes that the brain can efficiently estimate the three-dimensional kinematic consequences of the motor commands that generate the desired tracking motion of the eye. Since up to date there is not enough information about the geometric relationship between motor commands and three-dimensional ocular kinematics during smooth tracking of an object of interest, our understanding of the interactions between retinal and extra retinal signals remains necessarily limited. A major goal of this study is to bridge this gap starting from basic motor principles

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.