Abstract
Saccades are rapid eye movements that are used by all species with good vision. In this study, we set out to characterize the complete repertoire of larval zebrafish horizontal saccades to gain insight into their contributions to visually guided behavior and underlying neural control. We identified five saccade types, defined by systematic differences in kinematics and binocular coordination, which were differentially expressed across a variety of behavioral contexts. Conjugate saccades formed a large group that serves at least four functions. These include fast phases of the optokinetic nystagmus, visual scanning in stationary animals, and shifting gaze in coordination with body turns. In addition, we discovered a previously undescribed pattern of eye-body coordination in which small conjugate saccades partially oppose head rotation to maintain gaze during forward locomotion. Convergent saccades were coordinated with body movements to foveate prey targets during hunting. Detailed kinematic analysis showed that conjugate and convergent saccades differed in the millisecond coordination of the eyes and body and followed distinct velocity main sequence relationships. This challenges the prevailing view that all horizontal saccades are controlled by a common brainstem circuit and instead indicates saccade-type-specific neural control.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.