Abstract

The one-degree-of-freedom (DOF) mechanism has a simple structure, convenient control, and high stiffness, and it has been applied in many micro jumping robots. Meanwhile, the six- and eight-bar mechanisms can satisfy more complex motion requirements than the four-bar jumping leg mechanism and they have good application prospects. However, the lack of effective design methods limits the application range of these mechanisms. In this work, a type and dimensional integration synthesis method was proposed with the one-DOF six-bar leg mechanism as the research object. The initial tibia and femur were determined based on the kinematic chain atlas, and configuration design was implemented through the superposition of links. When a closed chain was formed in the superposition process, the feasible range of the link length was analyzed by considering the constraint conditions. The proposed method innovatively establishes the relationship between the kinematic chain atlas and the configuration, and the feasible length ranges of the links can be quickly obtained simultaneously. Several examples were provided to prove the feasibility of the kinematic synthesis method. This method provides a useful reference for the design of one-DOF mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.