Abstract
AbstractAnomalously strong North Atlantic jets, defined in this study as jets with wind speeds exceeding 100 m·s−1, are notable due to their potential to induce high‐impact weather. This study examines the kinematic processes that contribute to the intensification of anomalously strong North Atlantic jets, as well as the variability in those processes across a large number of events. Anomalously strong jets are objectively identified during September–May 1979–2018 within the Climate Forecast System Reanalysis and composited to reveal the synoptic‐scale flow evolution associated with jet intensification. The analysis demonstrates that anomalously strong North Atlantic jets are most frequent during the winter compared with the fall and spring, and that their development is preceded by low‐level warm‐air advection, poleward moisture advection, and moist ascent within the warm conveyor belt of a surface cyclone beneath the equatorward jet‐entrance region. A diagnosis of the irrotational and nondivergent components of the ageostrophic wind within the near‐jet environment reveals that both wind components facilitate jet intensification via their nonnegligible contributions to negative potential vorticity (PV) advection and PV frontogenesis in the vicinity of the dynamic tropopause. Weather Research and Forecasting (WRF) model simulations of a jet event from December 2013 with and without latent heating further suggest that the ageostrophic wind field within the near‐jet environment is substantially modulated by latent heating. The foregoing results indicate that a diagnosis of jet intensification during anomalously strong jet events is dependent on an accurate representation of the cumulative effects of latent heating within the near‐jet environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Quarterly Journal of the Royal Meteorological Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.