Abstract

Kilonovae are the electromagnetic transients created by the radioactive decay of freshly synthesized elements in the environment surrounding a neutron star merger. To study the fundamental physics in these complex environments, kilonova modeling requires, in part, the use of radiative transfer simulations. The microphysics involved in these simulations results in high computational cost, prompting the use of emulators for parameter inference applications. Utilizing a training set of 22 248 high-fidelity simulations (composed of 412 unique ejecta parameter combinations evaluated at 54 viewing angles), we use a neural network to efficiently train on existing radiative transfer simulations and predict light curves for new parameters in a fast and computationally efficient manner. Our neural network can generate millions of new light curves in under a minute. We discuss our emulator's degree of off-sample reliability and parameter inference of the AT2017gfo observational data. Finally, we discuss tension introduced by multiband inference in the parameter inference results, particularly with regard to the neural network's recovery of viewing angle. Published by the American Physical Society 2024

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.