Abstract

The Type VI secretion system (T6SS) is widely used by bacterial pathogens as an effective weapon against bacterial competitors and is also deployed against host eukaryotic cells in some cases. It is a contractile nanomachine which delivers toxic effector proteins directly into target cells by dynamic cycles of assembly and firing. Bacterial cells adopt distinct post-translational regulatory strategies for deployment of the T6SS. ‘Defensive’ T6SSs assemble and fire in response to incoming attacks from aggressive neighbouring cells, and can utilise the Threonine Protein Phosphorylation (TPP) regulatory pathway to achieve this control. However, many T6SSs are ‘offensive’, firing at all-comers without the need for incoming attack or other cell contact-dependent signal. Post-translational control of the offensive mode has been less well defined but can utilise components of the same TPP pathway. Here, we used the anti-bacterial T6SS of Serratia marcescens to elucidate post-translational regulation of offensive T6SS deployment, using single-cell microscopy and genetic analyses. We show that the integration of the TPP pathway with the negative regulator TagF to control core T6SS machine assembly is conserved between offensive and defensive T6SSs. Signal-dependent PpkA-mediated phosphorylation of Fha is required to overcome inhibition of membrane complex assembly by TagF, whilst PppA-mediated dephosphorylation promotes spatial reorientation and efficient killing. In contrast, the upstream input of the TPP pathway defines regulatory strategy, with a new periplasmic regulator, RtkS, shown to interact with the PpkA kinase in S. marcescens. We propose a model whereby the opposing actions of the TPP pathway and TagF impose a delay on T6SS re-assembly after firing, providing an opportunity for spatial re-orientation of the T6SS in order to maximise the efficiency of competitor cell targeting. Our findings provide a better understanding of how bacterial cells deploy competitive weapons effectively, with implications for the structure and dynamics of varied polymicrobial communities.

Highlights

  • Bacteria constantly face a challenging external environment, with their survival dependent on the ability to adapt to abiotic conditions, overcome host defences or successfully compete against rival bacterial cells

  • This work aimed to discover how the activity of the T6SS is controlled in offensive bacteria compared with defensive bacteria, and how this regulation facilitates efficient killing of targeted bacteria

  • We studied the offensive anti-bacterial T6SS of Serratia marcescens, a pathogen causing hospitalacquired infections

Read more

Summary

Introduction

Bacteria constantly face a challenging external environment, with their survival dependent on the ability to adapt to abiotic conditions, overcome host defences or successfully compete against rival bacterial cells. The Type VI secretion system (T6SS) is widespread in Gram-negative bacteria and is able to deliver toxic proteins, known as effectors, directly into target cells. In addition to commensals and environmental bacteria, use anti-bacterial T6SSs to deliver anti-bacterial toxins into rival bacterial cells, whilst protecting themselves and their siblings from intoxication through possession of cognate immunity proteins able to neutralise each T6SS-delivered effector. T6SS-dependent anti-bacterial effectors include families of peptidoglycan hydrolases, phospholipases and DNases, in addition to examples of pore forming toxins, NAD-glycohydrolases and others of currently unknown function [2, 4,5,6]. The T6SS can promote very efficient killing of competitors and its importance in maintaining and disrupting complex communities such as the human gut microbiota is becoming increasingly appreciated [7, 8]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.