Abstract

GRW theory offers precise laws for the collapse of the wave function. These collapses are characterized by two new constants, \(\lambda \) and \(\sigma \). Recent work has put experimental upper bounds on the collapse rate, \(\lambda \). Lower bounds on \(\lambda \) have been more controversial since GRW begins to take on a many-worlds character for small values of \(\lambda \). Here I examine GRW in this odd region of parameter space where collapse events act as natural disasters that destroy branches of the wave function along with their occupants. Our continued survival provides evidence that we don’t live in a universe like that. I offer a quantitative analysis of how such evidence can be used to assess versions of GRW with small collapse rates in an effort to move towards more principled and experimentally-informed lower bounds for \(\lambda \).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.