Abstract

Fabry disease is classified as a rare X-linked disease caused by a complete or partial defect of enzyme alpha-galactosidase, due to GLA gene mutations. This disorder leads to intracellular globotriaosylceramide (Gb3) deposition associated with increased Gb3 plasma levels. Most of the symptoms of the disease, involving kidneys, heart and nervous system, result from this progressive Gb3 deposition. The incidence is estimated in 1/50,000 to 1/117,000 in males. Fabry nephropathy begins with microalbuminuria and/or proteinuria, which, in the classic form, appear from childhood. Thus, a progressive decline of renal function can start at a young age, and evolve to kidney failure, requiring dialysis or renal transplantation. Enzyme replacement therapy (ERT), available since 2001 for Fabry disease, has been increasingly introduced into the clinical practice, with overall positive short-term and long-term effects in terms of ventricular hypertrophy and renal function. Kidney transplantation represents a relevant therapeutic option for Fabry nephropathy management, for patients reaching end-stage renal disease, but little is known about long-term outcomes, overall patient survival or the possible role of ERT after transplant. The purpose of this review is to analyze the literature on every aspect related to kidney transplantation in patients with Fabry nephropathy: from the analysis of transplant outcomes, to the likelihood of disease recurrence, up to the effects of ERT and its possible interference with immunosuppression.

Highlights

  • Fabry disease (FD) is an X-linked lysosomal inherited disorder, caused by deficient or absent activity of the enzyme alpha-galactosidase, caused by the mutation in the galactosidase A (GLA) gene

  • In order to improve the detection of Fabry patients, many newborn screening tests are used in clinical practice, and they currently represent the best strategy for identifying patients with FD at an early stage and without clinical manifestations [5]

  • Graft survivals are comparable to non-Fabry disease patients, and long-term graft survival with FD

Read more

Summary

Introduction

Fabry disease (FD) is an X-linked lysosomal inherited disorder, caused by deficient or absent activity of the enzyme alpha-galactosidase, caused by the mutation in the GLA gene. This enzyme defect leads to the progressive accumulation of lysosomal glycosfingolipids, globotriaosylceramide (Gl-3). The reported annual incidence is 1 in 476,000 in the general population, but this might largely underestimate the true prevalence, due to the wide spectrum of clinical phenotypes [3]. The prevalence of the classic FD form ranges between 1/8454 and 1/117,000 male live births [4]. The α-galactosidase A (GLA) gene is involved in the disease by causing a marked reduction in alpha-galactosidase enzymatic activity, and the subsequent deposition of its major substrate, globotriaosylceramide (Gb3), in endothelial cells, cardiomyocytes, fibroblasts, nerve cells and renal cells (podocytes, glomerular, mesangial and tubular cells) [1,2].

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.