Abstract

In the present paper and the companion paper [8] a probabilistic (statistical mechanical) approach to the study of canonical metrics and measures on a complex algebraic variety X is introduced. On any such variety with positive Kodaira dimension a canonical (birationally invariant) random point processes is defined and shown to converge in probability towards a canonical deterministic measure on X, coinciding with the canonical measure of Song-Tian and Tsuji. The proof is based on new large deviation principle for Gibbs measures with singular Hamiltonians which relies on an asymptotic submean inequality in large dimensions, proved in a companion paper. In the case of a variety X of general type we obtain as a corollary that the (possibly singular) Kahler-Einstein metric on X with negative Ricci curvature is the limit of a canonical sequence of quasi-explicit Bergman type metrics. In the opposite setting of a Fano variety X we relate the canonical point processes to a new notion of stability, that we call Gibbs stability, which admits a natural algebro-geometric formulation and which we conjecture is equivalent to the existence of a Kahler-Einstein metric on X and hence to K-stability as in the Yau-Tian-Donaldson conjecture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.