Abstract
We present a theory of the low-temperature transport of holes confined in the Ge strained channel of single-side modulation-doped SiGe/Ge/SiGe square quantum wells (QWs). Besides the well-known scattering mechanisms such as remote impurities and surface roughness, the theory includes misfit deformation potential. We prove that due to the effect from doping-induced band bending, the surface roughness and misfit deformation potential scatterings are considerably strengthened. Accordingly, these are found to be the key scattering mechanisms in the SiGe/Ge/SiGe system, which are still a subject under debate. Our theory can explain all recent experimental data about the transport properties of interest, namely, the carrier-density dependences of the hole mobility and the ratio of the transport to quantum lifetimes. Further, the calculated hole mobility in Ge strained QWs exhibits a special channel-width dependence with a sharp peak, which was observed but has not been explained so far.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.