Abstract

The commonly accepted Stranski-Krastanow model, according to which island formation occurs on top of a wetting layer (WL) of a certain thickness, predicts for the morphological evolution an increasing island aspect ratio with volume. We report on an apparent violation of this thermodynamic understanding of island growth with deposition. In order to investigate the actual onset of three-dimensional islanding and the critical WL thickness in the Ge/Si(001) system, a key issue is controlling the Ge deposition with extremely high resolution [0.025 monolayer (ML)]. Atomic force microscopy and photoluminescence measurements on samples covering the deposition range 1.75--6.1 ML, taken along a Ge deposition gradient on 4 in. Si substrates and at different growth temperatures $({T}_{\text{g}})$, surprisingly reveal that for ${T}_{\text{g}}>675\text{ }\ifmmode^\circ\else\textdegree\fi{}\text{C}$ steeper multifaceted domes apparently nucleate prior to shallow {105}-faceted pyramids, in a narrow commonly overlooked deposition range. The puzzling experimental findings are explained by a quantitative modeling of the total energy with deposition. We accurately matched ab initio calculations of layer and surface energies to finite-element method simulations of the elastic energy in islands, in order to compare the thermodynamic stability of different island shapes with respect to an increasing WL thickness. Close agreement between modeling and experiments is found, pointing out that the sizeable progressive lowering of the surface energy in the first few MLs of the WL reverts the common understanding of the SK growth onset. Strong similarities between islanding in SiGe and III/V systems are highlighted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.